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Ab initio electronic-structure methods are used to study the properties of Fe2P1−xSix in ferromagnetic and
paramagnetic states. The site preference and lattice relaxation are calculated with the projector augmented
wave method as implemented in the Vienna ab initio simulation package. The paramagnetic state is modeled
by the disordered local magnetic moment scheme, and the chemical and magnetic disorder is treated using the
coherent potential approximation in combination with the exact muffin-tin orbital formalism. The calculated
lattice parameters, atomic positions, and magnetic properties are in good agreement with the experimental and
other theoretical results. In contrast to the observation, for the ferromagnetic state the body centered ortho-
rhombic structure �bco, space group Imm2� is predicted to have lower energy than the hexagonal structure

�hex, space group P6̄2m�. The zero-point spin fluctuation energy difference is found to be large enough to
stabilize the hex phase. For the paramagnetic state, the hex structure is calculated to be the stable phase and the
computed total energy versus composition indicates a hex to bco crystallographic phase transition with increas-
ing Si content. The phonon vibrational free energy, estimated from the theoretical equation of state, turns out
to stabilize the hexagonal phase, whereas the electronic and magnetic entropies favor the low symmetry
orthorhombic structure.
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I. INTRODUCTION

Iron pnictides have attracted much attention in recent
years due to their potential use in magnetic refrigeration.
Several experimental works reported large magnetocaloric
effect �MCE� near room temperature in MnFe�PAs�-based
compounds.1–7 Both the Curie temperature �TC� and the
MCE can be subtly tuned within the same crystal structure
by substituting Fe and P/As. In other cases, substitution of Fe
and P may lead to structural changes as well.8,9

The parent system for the above compounds is the hex-
agonal �hex� Fe2P. In 1980s, Jernberg et al.10 reported a
phase transformation in Si-doped Fe2P �Fig. 1�. According to
these measurements, the silicon atoms occupy the P sublat-
tice and stabilize a body centered orthorhombic �bco� phase
below a critical temperature �Tt�. Around zero temperature,
the system remains in the hex phase up to �10% Si, and
beyond this concentration the transition temperature shows a
rapid increase with the Si amount. At temperatures larger
than �200 K, the structural transition occurs within a nar-
row temperature interval ��20 K�.10–12 Furthermore, the fer-
romagnetic �FM� transition temperature of Fe2P1−xSix was
found to increase from �216 K for x=0 to �660 K for x
=0.35.10 Since the composition dependence of TC is weaker
than that of Tt �Fig. 1�, the two transition temperatures cross
each other around x�0.28 so that both crystallographic
phases exist in the paramagnetic �PM� phase as well. It is
interesting that the slope of the experimental Tt against Si
content is almost constant for the two magnetic states and the
slope of TC is slightly reduced in the bco phase.

In spite of the comprehensive experimental data, the the-
oretical description of the effect of Si on the structural and

magnetic properties of hexagonal Fe2P and on the hex-bco
phase transformation in Fe2P1−xSix has remained scarce. In
this work, we investigate the effect of Si doping on the struc-
tural and magnetic properties of ferromagnetic and paramag-
netic Fe2P and on the phase stability of paramagnetic Fe2P.
The structural and magnetic properties have been calculated
using the ab initio exact muffin-tin orbital �EMTO�
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FIG. 1. Schematic phase diagram of the Fe2�PSi� system �Ref.
10�. Shown are the hex-bco transition temperature Tt �solid line�
and the Curie temperature TC �dashed line� as a function of Si
content.
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method13–17 and the projector augmented wave �PAW�
method as implemented in the Vienna ab initio simulation
package �VASP�.18–21 The paramagnetic state has been de-
scribed within the disordered local magnetic moments
�DLM� picture22,23 and the chemical and magnetic disorder
have been treated using the coherent potential approximation
�CPA� �Refs. 24 and 25� in combination with the EMTO
method.16,17 For both crystallographic structures, the calcu-
lated lattice parameters, atomic positions, bulk moduli, and
magnetic properties are in good agreement with the experi-
mental and former theoretical values.9,11,26–31 For the ferro-
magnetic state the bco structure is found to be the stable
phase, in contrast to the experimental finding. At the same
time, zero-point spin fluctuation energy is estimated to stabi-
lize the ferromagnetic hex phase. Our first-principles ap-
proach qualitatively captures the observed hex-bco structural
phase transitions in paramagnetic Fe2P1−xSix although pre-
dicting a significantly larger two phase field than the one
seen in experiments. Combining the present ab initio results
with classical models for the thermal effects, we find that the
magnetic and electronic entropy terms favor the paramag-
netic bco phase, whereas the vibrational free energy strongly
stabilizes the hex structure.

The rest of the paper is divided into three main sections
and conclusions. Section II presents the theoretical tools.
This includes a brief overview of the employed ab initio
methods, the experimental crystal structures and the most
important details of the numerical calculations. The ab initio
results are presented and discussed in Sec. III. Here, we
present the theoretical crystal structures and magnetic prop-
erties of Fe2P, and investigate the effect of Si doping on the
crystal structure, phase stability and magnetic properties of
Fe2P1−xSix. In Sec. IV, we use classical models to interpret
our findings from Sec. III. First, we compare the zero-point
phonon and magnetic energies to the calculated energy dif-
ference between ferromagnetic hex and bco Fe2P. Next, we
investigate the chemical effect of Si and briefly discuss the
temperature effects on the phase stability of paramagnetic
Fe2P1−xSix.

II. THEORETICAL TOOLS

A. Total energy methods

We employed two different total energy methods to de-
scribe the thermophysical properties of Fe2P1−xSix with x
�0.4. The exact muffin-tin orbital method13–17 was used to
treat the chemical and magnetic disorder, whereas the crystal
structure relaxation was performed using projector aug-
mented wave method.18–21

The EMTO theory formulates an efficient method for
solving the Kohn-Sham equation.32 It may be considered as
an improved Korringa-Kohn-Rostoker method, where the ex-
act Kohn-Sham potential is represented by large overlapping
potential spheres. Inside these spheres the potential is spheri-
cally symmetric, and constant between the spheres. How-
ever, within the EMTO theory, in contrast to the usual
muffin-tin based methods, the one-electron states are deter-
mined exactly �within the common numerical errors� for an
optimized overlapping muffin-tin potential. This potential is

chosen as the best possible spherical approximation to the
exact potential:14,17,33 the radii of the potential spheres, the
spherical potential waves, and the constant value from the
interstitial, are determined by minimizing �a� the deviation
between the full potential and the overlapping muffin-tin po-
tential and �b� the errors coming from the overlap between
spheres. See Refs. 33 and 34 for further details about the
potential optimization. In EMTO method, the substitutional
disorder is treated using the coherent potential
approximation24,25 and the total energy is computed via the
full charge-density technique.35 The accuracy of the EMTO
method for the equation of state of metals and disordered
alloys has been demonstrated in a number of former
works.16,17,36–43

The PAW method is a density-functional method using the
plane-wave basis.44,45 In PAW, the interaction between va-
lence and core electrons is taken into account via pseudopo-
tentials. For valence electrons, the Kohn-Sham equations are
solved without shape approximation for the potential and
density. It has been shown that PAW possesses the same
accuracy as the full potential all electron methods.46

B. Crystal structure

The hexagonal phase of Fe2P has the space group P6̄2m
with six Fe atoms and three P atoms per unit cell. There are
three Fe atoms of type Fe�I� and three of type Fe�II�. Two
phosphorus atoms have type P�I� and one type P�II�. Fe�I� is
surrounded by four P atoms which form a tetrahedron and
Fe�II� by five P atoms forming a pyramid. Therefore Fe�I�-3f
site is also called tetrahedral site and Fe�II�-3g pyramidal
site.47,48

In early 1980s, Jernberg et al.10 studied the crystal struc-
ture and magnetic properties of Fe2P1−xSix with x�0.35 us-
ing Mössbauer spectroscopy. According to them, Si addition
to Fe2P transforms the hex structure to a body centered
orthorhombic structure with space group Imm2. In the ortho-
rhombic structure, there are three different type of phos-
phorus sites P�1�, P�2�, and P�3�, and six different type of
iron sites Fe�1�,Fe�2�,…,Fe�6�. The bco primitive cell con-
tains four Fe�1�, two Fe�2�, two Fe�3�, two Fe�4�, one Fe�5�,
and one Fe�6� iron sites, and four P�1�, one P�2�, and one
P�3� phosphorus sites.

In the following, for the description of the hex �bco�
phase we use roman �Arabic� numbers. For reference, the
experimental lattice parameters and atomic positions are
given in parenthesis in Table I for hex Fe2P �Ref. 49� and in
Table II for bco Fe2P0.75Si0.25.

11

C. Details of the numerical calculations

The PAW method in combination with the local density
approximation �LDA� �Ref. 50� and the Perdew-Burke-
Ernzerhof �PBE� generalized gradient approximation51 was
used to determine the theoretical equilibrium crystal struc-
ture of hex and bco Fe2P and Fe2P2/3Si1/3 in the ferromag-
netic state. In these calculations, the Fe 3d and 4s, and the P
and Si 3s and 3p electrons were treated as valence electrons.
The volume of the unit cell and the positions of the atoms
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were relaxed using conjugate-gradient minimization of total
energy until the remaining forces were less than 20 meV /Å.
The number of k points in the irreducible wedge of the Bril-
louin zone was 324 and 100 for hex and bco structures, re-
spectively. The k-point sampling was performed by the
Monkhorst-Pack scheme.52 The energy cutoff for plane
waves was set to 500 eV. These values assured a conver-
gence in the total energy of about 0.1 mRy.

The total energies of the Fe2P1−xSix alloys were calculated
using the EMTO method. The paramagnetic state was mod-
eled by the disordered local magnetic moment approach.22,23

This approximation accurately describes the paramagnetic
state with randomly oriented local magnetic moments.22

Here, we treated the Fe2P1−xSix ternary system as a quater-
nary �Fe0.5

↑ Fe0.5
↓ �2P1−xSix alloy with a random mixture of two

magnetic states of Fe. It has been shown that the total energy
and the effective medium obtained with the DLM approach
is suitable to calculate phase stability and magnetic proper-
ties of paramagnetic Fe alloys.9,38,41,53,54 In the following,
when referring to the theoretical PM state we mean the zero-
temperature DLM state. The chemical disorder in the FM

and PM states and the magnetic disorder in the PM state
were treated using the CPA as implemented in the EMTO
method.16

In the EMTO calculations, the one-electron equation was
solved within the scalar-relativistic and soft-core approxima-
tions. The Green’s function was calculated for 16 complex
energy points distributed exponentially on a semicircular
contour. In the basis set s , p and d orbitals were included,
and in the one-center expansion of the full charge density
lmax=8 cutoff was used. The electrostatic correction to the
single-site coherent-potential approximation was described
using the screened impurity model.55 For Fe the 3d and 4s
electrons and for P and Si the 3s and 3p electrons were
treated as valence electrons. The Brillouin-zone sampling
was performed using 45 and 175 uniformly distributed k
points in the irreducible wedge of the hex and bco Brillouin
zones, respectively. The self-consistent EMTO calculations
were performed within LDA and the total energies were cal-
culated using both LDA and PBE approximations.

Apart from some numerical errors, the PAW total energies
are expected to represent the correct LDA or PBE level
density-functional result. On the other hand, the EMTO
method suffers from the shape approximation employed for
the one-electron potential. In principle, the errors coming
from this approximation can be lowered by increasing the
number of basis functions included in the self-consistent
calculation.56 However, going beyond spd or spdf basis set
is rather cumbersome in the case of large systems and there-
fore here we adopted a different approach. Full potential cal-
culations have often been considered as reference for other
electronic structure and total energy methods. Hence, here
we used our PAW results obtained for the ferromagnetic
Fe2P as reference when minimizing the errors of the muffin-
tin potential in the EMTO total energies. Finally, for the radii
of the Fe, P, and Si potential spheres we arrived at Si=0.9
�wi, where wi stands for the atomic radii of the Fe or P sites
from the hex or bco structures.

TABLE I. Theoretical �PAW-PBE� lattice parameters and atomic
positions for hex Fe2P. For reference, the experimental room-
temperature values �Ref. 49� are shown in parenthesis.

Position

Space group: P6̄2m

Lattice parameters

a=5.802�5.8675� Å b=a c=3.386�3.4581� Å

X Y Z

Fe�I� 3f 0.257 �0.25683� 0 0

Fe�II� 3g 0.591 �0.59461� 0 0.5

P�I� 2c 0.333 0.667 0

P�II� 1b 0 0 0.5

TABLE II. Theoretical �PAW-PBE� lattice parameters and atomic positions for bco Fe2P. For reference,
the experimental room temperature values for Fe2P0.75Si0.25 �Ref. 11� are shown in parenthesis.

Position

Space group: Imm2

Lattice parameters

a=6.502�6.533� Å b=10.047�10.3632� Å c=6.022�6.1425� Å

X Y Z

Fe�1� 8e 0.218 �0.219� 0.370 �0.373� 0.359 �0.372�
Fe�2� 4c 0.217 �0.217� 0 0.252 �0.251�
Fe�3� 4d 0 0.701 �0.701� 0.719 �0.725�
Fe�4� 4d 0 0.208 �0.208� 0.146 �0.152�
Fe�5� 2b 0 0.5 0.073 �0.083�
Fe�6� 2a 0 0 0.615 �0.607�
P,Si�1� 8e 0.269 �0.273� 0.334 �0.332� 0.990 �0.976�
P,Si�2� 2b 0 0.5 0.548 �0.517�
P,Si�3� 2a 0 0 0.968 �0.981�
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III. FIRST-PRINCIPLES RESULTS

A. Fe2P

1. Theoretical crystal structure

In the structure optimization, we started from the experi-
mental crystal structures and performed a full lattice relax-
ation within the corresponding space group using the PAW
method and the PBE exchange-correlation approximation.
The obtained theoretical lattice parameters and atomic posi-
tions for the ferromagnetic Fe2P in the hex phase and in the
hypothetical bco phase are listed in the Tables I and II. All
further electronic structure and total energy calculations were
performed using these theoretical data.

In the case of the hex structure �Table I�, the theoretical
internal coordinates agree very well with the experimental
data. At the same time, it is found that PAW-PBE underesti-
mates the a and c hexagonal lattice parameters of Fe2P by
1.1% and 2.1%, respectively. For the bco structure, the de-
viation between the theoretical �Table II� and the experimen-
tal internal parameters are somewhat larger than for the hex
structure. We ascribed this deviation to the fact that the ex-
perimental crystal structure was obtained for Fe2P0.75Si0.25
whereas the present structural relaxation was done without
Si. However, similar to the hex structure, PAW-PBE under-
estimates all three orthorhombic lattice parameters of Fe2P
compared to Fe2P0.75Si0.25. Although Si slightly increases the
equilibrium volume of Fe2P �Sec. III B 1�, the above under-
estimation cannot be accounted for by doping effect alone. It
is more likely that the overbinding is connected with the
accuracy of the exchange-correlation functionals.

In general, all recent gradient level exchange-correlation
functionals yield accurate or slightly overestimated lattice
parameters for metals.57,58 Exceptions are the 3d metals,
where the common approximations underestimate the equi-
librium volume. The effect of the exchange-correlation ap-
proximation on the average Wigner-Seitz radius and bulk

modulus of hex and bco Fe2P is illustrated in Table III. In
these tests, the crystal structures were fixed to the theoretical
results from Tables I and II. The equilibrium properties were
obtained from a Morse type of function59 fitted to the theo-
retical total energies calculated for six different volumes. Re-
sults are shown for PAW and EMTO calculations. We find
that for the equilibrium radius the large LDA errors are effi-
ciently remedied by the PBE gradient correction. The EMTO
method gives wbco�whex, which is in a slight contrast with
the experimental radii from Table III. This discrepancy may
be ascribed to the effect of Si present in the experimental
wbco. The present theoretical bulk modulus for PM hex Fe2P
�161 GPa� is in good agreement with the average room-
temperature experimental data of 169 GPa.26,27 For compari-
son, for the bulk modulus of the nonmagnetic hex Fe2P, us-
ing the PAW-PBE approach, Scott et al.27 obtained 244 GPa
at the theoretical volume and 175 GPa at the experimental
volume. To our knowledge, no experimental bulk modulus is
available for the bco phase.

2. Lattice stability of Fe2P-static conditions

For the structural energy difference between the ferro-
magnetic bco and hex Fe2P, viz. �EFM�Ebco

FM−Ehex
FM, the

PAW-PBE calculations give −0.124 mRy /atom. Using the
LDA approach changes the structural energy difference to
−0.024 mRy /atom. The main reason behind this difference
is the small LDA equilibrium volume compared to PBE or
experimental values �Table III�. We note that an LDA calcu-
lation performed at the PBE volume �not shown� gives simi-
lar structural energy difference as the full PBE.

Based on the above figures, we conclude that at static
conditions density-functional theory predicts the ferromag-
netic bco structure as the stable phase. This finding is in
disagreement with the experimental observation,10 according
to which Fe2P adopts the hexagonal structure for tempera-
tures down to 10 K. There are several possible reasons for

TABLE III. Theoretical and experimental average Wigner-Seitz radii �w in units of Bohr� and bulk moduli
�B in units of GPa� for hex and bco Fe2P in the FM and PM states. The numbers in parentheses are the
deviations �in %� relative to the average experimental values. The theoretical Wigner-Seitz radii were ob-
tained using the EMTO and PAW method, and the theoretical bulk moduli using the EMTO method in
combination with LDA and PBE.

whex wbco Bhex Bbco

EMTO FM LDA 2.606 �−1.33� 2.596 �−2.07� 200.4 233.1

PBE 2.664 �0.87� 2.656 �0.18� 186.8 195.4

PM PBE 2.660 �0.61� 2.657 160.9 �−5.07� 170.0

PAW FM LDA 2.543 �−3.71� 2.544 �−4.04�
PBE 2.618 �−0.87� 2.611 �−1.51�

Expt. FM 2.641a 2.651b

PM 2.644c,d 174e,165f

aFerromagnetic, 85 K Ref. 48.
bFerromagnetic, room temperature Ref. 11.
cParamagnetic, room temperature Ref. 49.
dParamagnetic, 285 K Ref. 48.
eParamagnetic, room temperature Ref. 26.
fParamagnetic, room temperature Ref. 27.
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the above disagreement. First, we note that the resolving
such small structural energy differences requires a very high
numerical accuracy. We should also realize that a barely
stable hexagonal phase would still disagree with the experi-
mental phase diagram �Fig. 1�. Namely, the fact that
Fe2P1−xSix remains in the hexagonal phase up to �8% Si
suggests that the correct energy difference between the two
competing phases should be �0.3 mRy /atom �see Sec.
IV A�. Combined with the present �EFM values, this would
mean that the error in our structural energy difference is
around 0.3–0.4 mRy/atom. This is quite unlikely since PAW
is commonly regarded as having the accuracy of the full
potential all electron methods.46 We recall that the error of
the present PAW total energies is �0.1 mRy /unit cell �i.e.,
�0.01 mRy /atom�.

A possible explanation for the above disagreement be-
tween theory and experiment would be a complex noncol-
linear magnetic structure present in the hex phase at low
temperatures as suggested by Mohn60 and Kobayashi et al.61

This is the topic of further investigations. Finally, we cannot
rule out the possibility that the phonon or the spin quantum
zero-point terms stabilize the hexagonal phase of ferromag-
netic Fe2P. These two effects may be estimated using classi-
cal models based on the calculated equation of state and
density of state and will be discussed in details in Sec. IV A.

In order to establish the lattice stability for the paramag-
netic Fe2P we consider the DLM total energies. Using the
EMTO-PBE approach, for the structural energy difference
between the paramagnetic bco and hex Fe2P, viz., �EPM

=Ebco
PM−Ehex

PM, we obtain 0.865 mRy/atom �note that for the
FM state the PAW and EMTO energy differences are the
same�. That is, within the disordered local magnetic moment
picture the hexagonal structure is calculated to be the stable
phase. This is in line with the experimental observation,10

according to which paramagnetic Fe2P has the hex crystal
structure.

3. Magnetic properties of Fe2P

The theoretical magnetic moments for ferromagnetic and
paramagnetic Fe2P are listed in Table IV. The magnetic mo-

ments on the P sites are due to the polarization effect of the
Fe atoms and they are antiparallel to the Fe moments. Since
for both structures the P moments are negligible, in the fol-
lowing we focus on the Fe moments only. In the case of the
ferromagnetic hex structure, the magnetic moment for
3g-pyramidal Fe�II� site is 2.08 �B and that of the
3f-tetrahedral Fe�I� site is 1.02 �B. The total magnetic mo-
ment per formula unit �hex

FM=3.01 �B. These figures show a
good agreement with the experimental28–30 and former
theoretical9,11,31 data obtained for Fe2P. For instance, Fujii et
al.48 measured 0.92�0.02 �B and 1.70�0.02 �B for the
tetrahedral and pyramidal sites, respectively. The present
magnetic moments are close to 0.89 �B on the 3f site and
1.81 �B on the 3g reported at 10 K for �Fe0.93Ni0.07�2P.62

For the ferromagnetic bco structure, there are six different
Fe magnetic moments belonging to sites
Fe�1�,Fe�2�,…,Fe�6�. Sites Fe�1�, Fe�2�, and Fe�6� possess
smaller magnetic moments compared to Fe�3�, Fe�4�, and
Fe�5�. The largest magnetic moment belongs to site Fe�5�.
The total bco magnetic moment per formula unit is very
close to that in the hex phase, viz., �bco

FM��hex
FM. Similar mag-

netic structure was obtained by Severin et al.11 using the
linear muffin-tin orbitals method. The small differences be-
tween the present magnetic moments and those reported in
Ref. 11 can be ascribed to the employed methods as well as
to the differences between the theoretical structures from
Tables I and II and the experimental counterparts adopted in
Ref. 11.

In the paramagnetic phase, modeled using the DLM ap-
proach, the net magnetic moment per formula unit is zero.
We find that the local magnetic moments disappear on the
3f-tetrahedral site in the hex phase, on the Fe�2� and Fe�6�
sites in the bco phase, and on all P sites. The local magnetic
moments on the other sites have slightly lower values than in
the ferromagnetic phase. Koumina et al.,63 using neutron dif-
fraction measurements, reported an abrupt decrease in the
magnetic moments near the Curie temperature �TC=217 K�.
At 230 K, for the magnetic moments they obtained �0 �B
for the 3f-tetrahedral site and �0.6 �B for 3g-pyramidal
site. This high temperature magnetic structure is well re-
flected by the present DLM results.

TABLE IV. Theoretical �EMTO-PBE� magnetic moments ��B� for FM and PM hex and bco Fe2P. The
paramagnetic phase is modeled using the DLM approach in combination with the EMTO method. The total
ferromagnetic moments per formula unit ��FM� are given in the last row.

hex bco

Site FM PM Site FM PM

Fe�I� 1.02 0 Fe�1� 1.38 0.25

Fe�2� 1.00 0.00

Fe�II� 2.08 1.67 Fe�3� 1.72 1.54

Fe�4� 2.21 1.96

Fe�5� 2.31 2.23

Fe�6� 1.02 0

P�I� −0.10 0 P�1� −0.11 0

P�II� −0.08 0 P�2� −0.10 0

P�3� −0.10 0

�FM 3.01 0 3.01 0
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4. Magnetostructural effect in hex Fe2P

It is interesting to compare the theoretical lattice param-
eters calculated for the ferromagnetic and paramagnetic
states of hex Fe2P and relate them to the magnetoelastic ef-
fect reported by Fujii et al.28 For this test we employ the
EMTO method and the PBE approximation. The theoretical
hexagonal lattice parameters for the FM and PM states of
Fe2P are listed in Table V, where, for comparison, we also
included the PAW-PBE �Table I� values for the FM state and
the experimental ones48,49 for both states. In the EMTO
structural relaxation, first we fixed the internal coordinates to
the PAW-PBE values, then calculated the equilibrium volume
for the fixed lattice and finally obtained the equilibrium c /a
by computing the total energies for seven different c /a val-
ues by keeping the volume and internal positions constant.
Taking into account these approximations, the agreement be-
tween EMTO and VASP, and between EMTO and experimen-
tal lattice parameters for the FM state may be considered to
be reasonable.

In the next step, we repeated the EMTO calculations for
the equilibrium lattice parameters of the PM state by em-
ploying the DLM approximation. Comparing the results ob-
tained for the FM and PM states, we find that the theoretical
equilibrium volume decreases by 0.5% when going from FM
to PM. This change should be compared to the 0.9% ex-
change striction estimated by Fujii et al.28 using Ni2P as a
prototype for the fictitious paramagnetic Fe2P at 0 K.

We find that the theoretical lattice parameter a decreases
by 0.083 Å, whereas c increases by 0.086 Å; upon mag-
netic disordering �Table V�. The changes are much larger
than the experimental discontinuities obtained at TC.28 How-
ever, since the present data contains no thermal effects, in
order to be able to compare them to the experimental struc-
tural changes we need to extrapolate the experimental ferro-
magnetic and paramagnetic lattice parameters to 0 K. For the
thermal expansion coefficients along the a ��a� and c ��c�
axis we use the experimental ferromagnetic and paramag-
netic values reported in Ref. 28. According to these, in the
ferromagnetic phase �a

FM=−4.0�10−5 1 /K and �c
FM=1.4

�10−5 1 /K, whereas the thermal expansion coefficients cor-
responding to the Curie-Weiss region �i.e., above �500 K�

are �a
PM=2.0�10−5 1 /K and �c

PM�0 1 /K. Starting from
the measured lattice parameters48 and assuming a linear tem-
perature dependence, we find that when going from the FM
to the PM state at 0 K, the experimental a decreases by
0.045 Å, and c increases by 0.025 Å. These estimations are
in reasonable agreement with the present theoretical values.

B. Fe2P1−xSix: The effect of Si doping

1. Equilibrium volume

The equilibrium average Wigner-Seitz radii of the hex-
agonal and orthorhombic Fe2P1−xSix were computed using
the EMTO-PBE method. Results are shown in Fig. 2 for both
ferromagnetic and paramagnetic states. The theoretical aver-
age atomic radii exhibit an almost linear increase with x. For
the FM state, the average concentration slopes �dw /dx� are
0.063 and 0.051 Bohr per atomic fraction �Bohr/a.f.� for the
hex and bco structures, respectively. In the PM state, the
increase in w�x� with concentration is somewhat smaller:
0.046 Bohr/a.f. for hex and 0.035 Bohr/a.f. for bco. It is
interesting that the large drop seen between the FM and PM
volumes of the hex phase is not present in the bco phase. In
fact, for x=0, wbco

FM is slightly smaller than wbco
PM, whereas for

x	0.15 we get the opposite trend.
To our knowledge, no direct experimental data is avail-

able for the effect of Si on the equilibrium volume of
Fe2P1−xSix. Using the present concentration slope for the FM
bco phase and the experimental equilibrium Wigner-Seitz ra-
dius of Fe2P0.75Si0.25 �2.65 Bohr, Ref. 10�, for the Wigner-
Seitz radius of the Si-free bco structure we obtain wbco
=2.637 Bohr. This extrapolated value is slightly smaller
than the experimental Wigner-Seitz radius for the Si-free FM
hex phase �2.64 Bohr, Ref. 49�. We recall that within the
PBE approximation both EMTO and PAW methods predict
wbco�whex �Table III�, in perfect agreement with the above
estimate.

2. Site preference and lattice relaxation

The experimentally recorded Mössbauer spectra assumed
a random distribution of Si on the P sites.10 Because of that

TABLE V. Theoretical �EMTO-PBE� hexagonal lattice param-
eters �in units of Å� for Fe2P in the FM and PM states. For com-
parison, the PAW-PBE �Table III� and the experimental values are
also listed.

a c c /a

FM �EMTO� 5.927 3.467 0.585

FM �PAW� 5.802 3.386 0.584

FM �exp.�a 5.877 3.437 0.585

PM �EMTO� 5.844 3.553 0.608

PM �expt.�b 5.868 3.458 0.589

PM �expt.�c 5.868 3.458 0.589

aFerromagnetic, 85 K Ref. 48.
bParamagnetic, 285 K Ref. 48.
cParamagnetic, room temperature Ref. 49.
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FIG. 2. The effect of Si doping on the equilibrium average
Wigner-Seitz radius of ferromagnetic and paramagnetic hexagonal
and orthorhombic Fe2P1−xSix. The paramagnetic phase is modeled
using the DLM approach in combination with the EMTO method.
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the volume effects discussed in Sec. III B 1 were calculated
by using randomly distributed Si atoms. However, since the
individual volumes around different P sites in the hex �bco�
phase differ by as much as 7.2% �9.6–11.7 %�, a preferential
site occupancy of the Si atoms on one of the P sites cannot be
completely excluded. Recently, Liu and Altounian64 reported
a site preference for Si in hexagonal MnFeP2/3Si1/3. Their
first-principles calculations carried out with the full
potential-linear muffin-tin orbital method showed that Si pre-
fers to occupy the 2c sites rather than 1b ones.

We investigated the effect of site preference for ferromag-
netic Fe2P2/3Si1/3 using the PAW-PBE method. We placed
one Si atom on one of the P�I� or P�II� sites from the hex-
agonal unit cell and two Si atoms on P�1�, P�2�, or P�3� sites
from the orthorhombic unit cell. The total energies obtained
for the fixed underlying lattices �Eu� and for fully relaxed
lattices �Er� are shown in Table VI. For the prior case, we
used the theoretical equilibrium lattices from Tables I and II
and for the latter we performed full structural relaxation. For
the bco phase, there are four equivalent P�1� sites, which

become inequivalent after introducing two Si atoms per unit
cell. The average energy of the resulting three different con-
figurations is denoted by P�1�� in Table VI. We can see that
the difference between different P�1� configurations is very
small and thus in the following we consider only the average
P�1�� energy.

In the hexagonal structure, the P�I� �2c� position turns out
to be more preferable by 1.12 mRy/atom �0.54 mRy/atom for
the unrelaxed structure� than the P�II� �1b� positions. For the
orthorhombic structure, all P�1� �8e� configurations are more
stable than the P�2� and P�3� sites and the average configu-
ration is below the P�2� and P�3� sites by 2.59 mRy/atom
�2.41 mRy/atom for the unrelaxed structure�. For hex
Fe2P2/3Si1/3 the present result is in line with that reported by
Liu et al.64

We note that the site preference for Fe2P2/3Si1/3 is more
pronounced for the bco structure than for the hex structure. It
is highly unfavorable to put Si atoms on the P�2� or P�3� sites
from the bco phase. This finding is consistent with the larger
volume differences between different P sites in the bco phase
compared to those in the hex phase and indicates that no
reliable phase stability can be computed without considering
the nonuniform distribution of Si atoms on P sites. The local
lattice relaxation around the Si atoms keeps the site prefer-
ence unchanged and gives similar relaxation energies for the
two structures. For the stable site occupancy, the total energy
is lowered with relaxation by �0.79 mRy /atom and
�0.73 mRy /atom for the hex and bco lattices, respectively.
Finally, we mention that taking into account the preferential
site occupancy for the Si atoms has a small effect �well be-
low 10%� on the theoretical volume versus composition
slopes �Sec. I�.

3. Magnetic properties

In Table VII, we compare the local magnetic moments for
paramagnetic Fe2P and Fe2P0.6Si0.4. The magnetic structure
corresponds to the equilibrium volume obtained by relaxing
the volume but fixing the b /a ,c /a lattice parameters and the
atomic coordinates to the theoretical values of Fe2P �Tables I
and II�. For each composition, the Si atoms were distributed

TABLE VI. Total energies �mRy/atom� for the unrelaxed �Eu�
and for the relaxed �Er� hexagonal and orthorhombic Fe2P2/3Si1/3.
The position of the Si atom in the hexagonal cell is shown by P�I�
and P�II�, and the positions of the two Si atoms in the orthorhombic
unit cell are shown by P�1�, P�2�, and P�3�. P�1�� stands for the
average of the three energies corresponding to the three different
configurations obtained by placing two Si atoms on the 8e positions
from the bco structure. For both structures the energies are given
relative to the most stable position after relaxation.

Structure Site Eu Er

hex P�I� 0.79 0.00

P�II� 1.33 1.12

bco P�1� 0.95 0.26

1.01 0.41

0.89 0.00

P�1�� 0.95 0.22

P�2�,P�3� 3.36 2.81

TABLE VII. Theoretical �EMTO-PBE� local magnetic moments ��B� for paramagnetic hex and bco Fe2P
and Fe2P0.6Si0.4. The paramagnetic phase is modeled using the DLM approach in combination with the
EMTO method.

hex bco

Site Fe2P Fe2P0.6Si0.4 Site Fe2P Fe2P0.6Si0.4

Fe�I� 0 0 Fe�1� 0.25 0.57

Fe�2� 0.00 0.00

Fe�II� 1.67 1.78 Fe�3� 1.54 1.54

Fe�4� 1.96 2.06

Fe�5� 2.23 2.32

Fe�6� 0.00 0.00

P�I� 0 0 P�1� 0 0

P�II� 0 0 P�2� 0 0

P�3� 0 0
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on the P sites by taking into account the site preference.
We find that for both hex and bco phases, the theoretical

PM moments slightly increase with Si doping. The average
PM moment increases from 1.67 �B �1.71 �B� to 1.78 �B
�1.97 �B� when 40% Si is introduced in hex �bco� Fe2P.
Notice that the difference between �hex

PM and �bco
PM increases

with Si concentration.
The energy difference between the PM and FM phases

��Emag�x�=EPM�x�−EFM�x�� of the hex and bco Fe2P1−xSix is
plotted in Fig. 3 as a function of x. In the simplest approxi-
mation, the magnetic energy can be related to the magnetic
transition temperature. Thus, increasing �Emag�x� with Si
concentration suggests increasing TC�x�, which is in accor-
dance with the experiment.10 On the other hand, the normal-
ized slope of �Emag�x� turns out to be significantly smaller
than the normalized slope of TC�x�. For instance, for the
hexagonal phase we get d�Emag�x� /dx /�Emag�0��0.33
compared to dTC�x� /dx /TC�0��5.69.10 Furthermore, the

magnetic energy is about 20% larger for the bco than for the
hex structure, suggesting somewhat larger transition tem-
perature in the bco phase.

4. Lattice stability of paramagnetic Fe2P1−xSix-static conditions

Since for FM state theory predicts the bco structure to be
the stable phase, it is beyond reason to discuss how the lat-
tice stability is influenced by alloying for this magnetic state.
Alternatively, one could focus on the PM state, for which the
EMTO-PBE method in combination with the DLM approach
predicts the hex structure to be the stable phase of Fe2P and
investigate how the structural energy difference ��EPM�x�
=Ebco

PM�x�−Ehex
PM�x�� varies with Si addition. The composition

dependence of �EPM�x� is shown in Fig. 4. The structural
energy difference was computed from the volume relaxed
total energies and taking into account the site preference but
neglecting the local lattice relaxations �i.e., using rigid lat-
tices�.

We find that for paramagnetic Fe2P1−xSix, the hex total
energy remains below the bco total energy up to �23% Si.
According to that, at static condition the stability field of the
hex phase is located below and that of the bco phase above
x�0.23. This is consistent with the experimental result.10,12

On the other hand, using the common tangent technique, we
find that at low temperature the present theory predicts a
wide two phase field between the hex and bco phases �Fig. 4,
inset, solid lines�, compared to the negligible miscibility gap
found in experiment.10 According to Jernberg and co-
workers, in Fe2P1−xSix the structural transformation takes
place within �20 K, which corresponds to �1% Si wide
two phase field as estimated from Fig. 1. We note that in Ref.
12 the width of the two phase field was estimated to be
somewhat larger ��7% Si�. Although the temperature depen-
dent terms in the free energy �e.g., the configurational en-
tropy� reduce the width of the theoretical miscibility gap, the
above contradiction cannot be explained merely by thermal
effects �Sec. IV C�.

IV. DISCUSSION

In the previous section, we presented the structural and
magnetic properties calculated from first-principles theory
for ferromagnetic and paramagnetic Fe2P and Fe2P1−xSix. In
the following, first we estimate the zero-point phonon and
magnetic energy contribution to the phase stability of ferro-
magnetic Fe2P. Next, we discuss the electronic structure ori-
gin of the effect of Si on the structural energy difference and
briefly comment on the possible thermal effects on the phase
stability of paramagnetic Fe2P1−xSix.

A. Zero-point energies

In contrast to the observation, theory �PAW-PBE� predicts
that the ferromagnetic bco structure has by ��EFM�
=0.124 mRy /atom lower total energy than that of the hex
structure �Sec. III A 2�. A plausible explanation for the above
disagreement would be the zero-point phonon vibration term
��Eph

zp�. Using the expression
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FIG. 3. Energy difference between the paramagnetic and the
ferromagnetic phases of the hex and bco Fe2P1−xSix as a function of
Si content. The energies were calculated using the EMTO-PBE ap-
proach and the paramagnetic phase was modeled using the DLM
approach.
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FIG. 4. Structural energy difference for paramagnetic Fe2P1−xSix
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�Eph
zp �

9

8
kB�
D

bco − 
D
hex� �1�

�kB is the Boltzmann constant� a difference of �
D=
D
bco

−
D
hex�18 K between the bco and hex Debye temperatures

would be enough to overcome the calculated total energy
difference between the two ferromagnetic structures. The
Debye temperature may be estimated from the bulk param-
eters as


D =
h

kB
	4�

3

−1/6

F���	wB

M

1/2

, �2�

where h is the Planck constant, � the Poisson ratio �here we
assume �hex=�bco=0.33�, M average atomic mass, w the
Wigner-Seitz radius, and B the bulk modulus. The function
F��� is defined in Ref. 65. Equation �2� in combination with
the calculated bulk parameters from Table III yields �
D
�12 K, which is below the minimum value of 18 K needed
to stabilize the hex phase.

On the other hand, close to zero temperature, the Si-doped
system remains in the hexagonal phase up to �8% Si.10

Using the mixing enthalpy versus composition slope calcu-
lated for the ferromagnetic structures �not shown�, we find
that in Si-free system the total energy of the hex phase
should be by �0.27 mRy below that of the bco phase. This
energy difference combined with the present �EFM would
require �Eph

zp �0.394 mRy or �
D�54 K, which repre-
sents about 13% of the experimental Debye temperature of
FM Fe2P �420 K, Ref. 66�. This is an unusually large differ-
ence between the Debye temperatures of systems with simi-
lar chemical bonding,67 making it unlikely that the zero-point
phonon term by itself is responsible for the stability of the
hex phase. We should also mention, however, that very large
�
D /
D may arise if one of the competing structures �in our
case the hex structure� is barely stable dynamically.39

In magnetic materials, the zero-point spin fluctuation term
should also be considered when calculating the lattice stabil-
ity at 0 K. For both crystal structures, there is a peak in the

density of states �DOS� near the Fermi level �EF� �Fig. 5�
indicating that Fe2P is a weak ferromagnet. Namely, for the
hex phase the nonmagnetic �NM� DOS is N�EF�
=24.1 states /Ry compared to 20.8 states/Ry obtained for the
PM state. The above figures for the bco phase are 24.5
states/Ry and 22.3 states/Ry for the NM and PM states.
Within the Stoner model, the magnetic susceptibility of a
weak ferromagnet is given by68

 =
3�B

2 N�EF�
�2c

, �3�

where �= �n↑−n↓� /n is the relative magnetization �n=n↑

+n↓, n↑ and n↓ being the spin occupation numbers� and

c = −
1

8

n2

N�EF�2�N�EF��
N�EF�

− 3�N�EF��
N�EF� 2� , �4�

where � and � stand for first- and second-order energy de-
rivatives, respectively. From the self-consistent DOS of NM
Fe2P, we have N�EF�bco�N�EF�hex, N�EF�bco� �−8.1
�N�EF�hex� , and N�EF�bco� �1.2�N�EF�hex� , yielding hex
�1.8bco. Since −1 gives the second order derivative of the
magnetic energy near the equilibrium magnetic moment, we
obtain that the hexagonal structure is magnetically softer
than the bco structure. Accordingly, the zero-point spin
fluctuations69–72 are expected to stabilize the hex phase rela-
tive to the bco phase.

In order to estimate the zero-point spin fluctuation energy
contribution to the structural energy difference ��ESF

zp � we
employ the expression proposed by Solontsov et al.70,72

ESF
zp �

3

4�
��SF ln

�SF
2 + �c

2

�SF
2 , �5�

where �=h /2�. The characteristic frequency of the spin
fluctuation �SF is obtained from the magnetic susceptibility 
and the magnetic relaxation rate ���SF=��, and the cutoff
frequency �c is taken from experiments.71 For the present
purpose, we use the approximations ��SF�−1�B

2 and ��c
�kBTmelt.

72 Taking the lower limit for the cutoff frequency
�c=�c

min ��c
min�kBTmelt /� with Tmelt from Ref. 73� gives

�ESF
zp �0.3 mRy /atom, whereas �c=2�c

min results in �ESF
zp

�0.5 mRy /atom. That is, the zero-point quantum spin fluc-
tuation term could indeed stabilize the hexagonal phase of
Fe2P at low temperature. For a final conclusion, however,
more accurate values for the characteristic frequencies and
cut-off frequencies are needed.

B. Chemical effect of Si

The structural change from Fig. 4 has mainly chemical
origin and can be understood by monitoring the total energy
components of paramagnetic Fe2P1−xSix alloys. According to
the simple picture of the metallic bonds,74 the crystal struc-
ture is determined by the balance of the Madelung and the
Peierls terms. The prior gives the electrostatic energy and the
latter is connected to the change in the one-electron energy
upon lattice distortion. More generally, the Peierls term in-
cludes all electronic structure changes �not necessarily sym-
metry lowering deformations� that lead to the decrease of the
kinetic energy.
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Within a simple approximation,75 the Madelung term is
proportional to �1.8−�M�, where �M is the Madelung con-
stant of the lattice. Accordingly, when �M decreases the elec-
trostatic energy increases. In our case, �hex

M =1.7720 and
�bco

M =1.7739. Hence, the average electrostatic energy of Fe2P
should be slightly smaller in the bco phase than in the hex
phase. In other words, the Madelung term favors the bco
phase. Indeed, the total electrostatic energy for the paramag-
netic hex Fe2P is −3779.227270 Ry /atom compared to
−3779.243642 Ry /atom obtained for the paramagnetic bco
phase. On the other hand, we find that the kinetic energy
�plus the exchange-correlation term� is smaller for the hex
phase �1854.099890 Ry/atom� than for the bco phase
�1854.117127 Ry/atom�. The difference between the kinetic
�one-electron� energies is also reflected in the total density of
states for the hex and bco structure �Fig. 5, open symbols�. In
particular, the DOS at the Fermi level is smaller for the hex
phase than for the bco phase.

Silicon doping changes the bonding in such a way that the
kinetic �plus exchange-correlation� energy decreases, i.e.,
both structures become more stable kinetically. This effect is
more pronounced for the hex structure than for the bco struc-
ture, which is represented in increasing kinetic-energy differ-
ence from 17.238 mRy/atom to 18.401 mRy/atom upon 40%
Si addition. The electrostatic energy shows the opposite
trend: for both structures the electrostatic energy increases
with Si doping. This is in line with the observation that
the average interstitial charge density decreases by
0.002273 electron /a.u.3 for the hex structure and by
0.001836 electron /a.u.3 for the bco structure when 40% Si
is added to Fe2P �note that Si has less number of electrons
than P�. Since the above change is more pronounced for the
hex structure, the difference between the bco and hex elec-
trostatic energies changes from −16.373 mRy /atom corre-
sponding to Fe2P to −19.123 mRy /atom obtained for
Fe2P0.6Si0.4. Hence, the electrostatic destabilization effect of
Si is larger in the hex structure than in the bco structure,
which together with the kinetic energy change leads to the
stabilization of the bco phase against the hex phase with Si
addition.

C. Temperature effects

In this section, we briefly discuss the effect of temperature
on the phase stability of paramagnetic Fe2P1−xSix. Since no
accurate phonon spectra was established, these results are
mainly intended to give a qualitative estimate how the tem-
perature affects the stability field of the hexagonal and ortho-
rhombic phases.

Before turning to the phonon contribution and to the elec-
tronic and magnetic entropy terms, we first briefly discuss
the effect of the mixing entropy. The configurational entropy
�Sc�, calculated within the mean-field approximation, has no
effect on the structural free energy difference �Fbco−Fhex� but
slightly reduces the width of the two phase field. As an ex-
ample, in inset of Fig. 4 we show the mixing enthalpy minus
T�Sc for hex and bco phases at T=700 K. We find that at
this temperature, the configurational term increases the sta-
bility range of the hexagonal Fe2P1−xSix from x=0 to x

�0.10. However, the miscibility gap between the hex and
bco phases still remains large, in disagreement with the
observation.10 Assuming that the present mixing enthalpies
from the inset of Fig. 4 represent the correct density func-
tional result for Fe2P1−xSix, it is clear that further thermal
effects are needed to resolve the above discrepancy between
theory and experiment.

The phonon free energy may be estimated using the De-
bye model with the characteristic temperature given in Eq.
�2�. In general, smaller Debye temperature corresponds to
softer lattice and to larger vibrational terms in the free
energy.67 For paramagnetic Fe2P1−xSix with 0�x�0.4, we
have wbco

PM�whex
PM �Fig. 2�. The calculated bulk modulus of the

hex �bco� phase, on the other hand, increases from 161 GPa
�170 GPa� to 175 GPa �181 GPa� as the Si content increases
from zero to 40%. Hence, the trend of the bulk modulus
turns out to be the dominant term in the Debye temperature,
yielding 
D

hex�
D
bco for all x values considered here �Fig. 6�.

That is, the phonon vibration stabilizes the hexagonal struc-
ture against the orthorhombic structure. This stabilization ef-
fect is in fact responsible for the broadening of the stability
field of the hexagonal phase with increasing T �Fig. 1�. On
the other hand, the difference between 
D

hex and 
D
bco de-

creases with Si addition �Fig. 6, inset�, which means that the
phonon contribution to the stability of hex Fe2P1−xSix re-
duces with x.

For a quantitative estimate of the phonon free energy, we
make use of the high-temperature expansion of the phonon
free energy.76,77 According to that the phonon vibration con-
tribution to the bco-hex free energy difference may be ap-
proximated as

�Fph�T� � 3kBT

D

bco − 
D
hex


D
bco . �6�

The present results for �Fph�T� are listed in Table VII for
x=0 and x=0.4 at T=700, 800, and 900 K. Compared to the

0 10 20 30 40

at.-% Si

400

420

440

460

480

500

Θ
D

(K
)

hexagonal

orthorhombic

0 10 20 30 40
0

10

20

30

∆Θ
D

(K
)

FIG. 6. Theoretical �EMTO-PBE� Debye temperatures of para-
magnetic hex and bco Fe2P1−xSix plotted as a function of Si content.
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internal energy difference from Fig. 4, the present �Fph�T�
values turn out to be rather significant. For example, by in-
cluding �Fph�700 K� in the free energy difference between
the bco and hex phases shifts the concentration, where
�Fbco−Fhex� crosses zero from x�0.23 �Fig. 4� to x�0.3.
The above estimate clearly demonstrates that no accurate
phase stability study of Fe2P1−xSix can be performed without
properly accounting for the phonon contributions to the free
energies of the hex and bco phases.

Going beyond the above simple Debye model requires the
determination of the phonon spectra for the hex and bco
structures as a function of Si concentration. This is an enor-
mous task, especially for the paramagnetic phase and it is
beyond the reach of the present ab initio tools. Based on the
present results for the free energy differences obtained for
rigid lattices, we suggest that the experimentally observed
unusually narrow transition zone between the hex and bco
phases is due to the soft modes in the phonon spectrum of
the hexagonal structure. Note that soft phonon modes would
also support the idea that the hex phase of Fe2P is barely
stable �Sec. IV A�.

The electronic entropy may be calculated using the
approximation67 Se� 2�2

3 N�EF�kB
2 T, and the corresponding

contribution �Fe=−T�Sbco
e −Shex

e � to the free energy differ-
ence between the bco and hex phases is given in Table VII
for x=0 and x=0.4 and for temperatures T=700, 800, and
900 K. We find that the electronic entropy has a bco stabi-
lizing effect in Fe2P, which is slightly diminished with Si
addition.

The effect of the magnetic entropy in the PM state may be
estimated using the mean-field approximation Sm

=kB�iln��i+1� ��i is the magnetic moment for site i� valid
for a completely disordered magnetic state.76 The magnetic
free energy term �Fm=−T�Sbco

m −Shex
m � calculated using the

moments from Table VII, is shown in Table VIII for x=0 and
x=0.4 and T=700, 800, and 900 K. Since the DLM moments
are somewhat larger for the bco structure than for the hex
structure, the magnetic entropy always stabilizes the bco
phase. The effect is small �below −0.1 mRy /atom� for Fe2P
but increases significantly with Si addition.

Summing up the phonon vibration, the electronic and
magnetic entropy terms, we find that in paramagnetic Fe2P
the thermal effects stabilize the hex phase by
�0.18 mRy /atom at 700 K and by �0.21 mRy /atom at
900 K. However, this effect is gradually diminished with Si
addition and changes sign around 20–25 % Si and T
�700 K �i.e., still within the stability field of the hex

phase�. When 40% Si is added, the total thermal effect favors
the bco phase by −0.13 mRy /atom at 700 K and
−0.19 mRy /atom at 900 K.

V. CONCLUSIONS

Using the EMTO and PAW methods, we have investi-
gated the bulk properties of hexagonal and orthorhombic
Fe2P1−xSix as a function of Si content. For Si free systems,
the present theoretical hexagonal and orthorhombic crystal
structures are in good agreement with the former experimen-
tal data. We find that the shape and the volume of the hex-
agonal unit cell changes upon ferromagnetic-paramagnetic
transition, in good agreement with the experiments. In the
ferromagnetic state, theory predicts the bco structure to be
slightly more stable than the experimentally observed hex
structure. We ascribe this discrepancy either to a barely
stable hex structure �with soft phonon modes� or to zero-
point quantum spin fluctuations. In the paramagnetic state,
modeled using the DLM picture, the hexagonal structure is
calculated to be the stable phase, in line with the observa-
tions.

Silicon addition increases the equilibrium volume of Fe2P
in an almost linear manner. We find that in the ferromagnetic
state, the Si atoms prefer the P�I� site from the hex structure
and the P�1� site from the bco structure. The Si site prefer-
ence turns out to be significant for both structures, contra-
dicting to the uniform site distribution assumed in experi-
ments. The calculated magnetic moments for both magnetic
states are in good agreement with the experimental and
former theoretical values. The energy difference between the
ferromagnetic and paramagnetic �DLM� state increases with
Si, indicating increasing transition temperature within both
crystallographic phases.

The experimentally observed hex-bco crystallographic
phase transition is reproduced by the theoretical calculations
performed for the paramagnetic state. However, in contrast
to the observations, the present theoretical phase transition
occurs through a wide two phase field. This deviation might
be due to the softening of the hexagonal lattice with Si ad-
dition, not accounted for by the present calculations. Using
simple models, we have estimated the thermal effects on the
phase stability. Phonon vibrations are found to favor the hex-
agonal structure, whereas the electronic and magnetic en-
tropy stabilize the bco phase. The total thermal effect
changes sign around 20–25 % Si. The present theoretical
results and the slight disagreement between the theoretical

TABLE VIII. Phonon vibration ��Fph�, electronic entropy ��Fe�, and magnetic entropy ��Fm� contribu-
tions to the free-energy difference between the paramagnetic hex and bco Fe2P1−xSix. Energies are listed in
mRy/atom for x=0 and x=0.4, and for temperatures T=700, 800, and 900 K.

T

�Fph �Fe �Fm

Fe2P Fe2P0.6Si0.4 Fe2P Fe2P0.6Si0.4 Fe2P Fe2P0.6Si0.4

700 0.35 0.16 −0.11 −0.05 −0.06 −0.24

800 0.41 0.18 −0.14 −0.07 −0.06 −0.28

900 0.46 0.20 −0.18 −0.08 −0.07 −0.31

AB INITIO STUDY OF STRUCTURAL AND… PHYSICAL REVIEW B 82, 085103 �2010�

085103-11



and experimental properties of Fe2P1−xSix call for further
more accurate experimental as well as theoretical investiga-
tions.
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